
 Elsevier Editorial System(tm) for Journal of Computational and Applied

Mathematics

 Manuscript Draft

Manuscript Number:

Title: Reduced-Dissipation Remapping of Velocity in Staggered Arbitrary Lagrangian-Eulerian

Methods

Article Type: Special Issue: FEMTEC 2009

Section/Category: Special Issue: FEMTEC 2009

Keywords: Conservative Interpolations; Staggered Discretization; Flux-Based Remap; Velocity

Remap.

Corresponding Author: Dr. Milan Kucharik,

Corresponding Author's Institution: Los Alamos National Laboratory

First Author: David Bailey

Order of Authors: David Bailey; Markus Berndt; Milan Kucharik; Mikhail Shashkov

Reduced-Dissipation Remapping of Velocity

in Staggered Arbitrary Lagrangian-Eulerian

Methods

David Bailey a Markus Berndt b Milan Kucharik c

Mikhail Shashkov d

aLawrence Livermore National Laboratory, P.O. Box 808 L-016, Livermore, CA

94551, USA, dsb@llnl.gov

bTheoretical Division, T-5, Los Alamos National Laboratory MS-B284, Los

Alamos, NM. 87545, USA, berndt@lanl.gov

cTheoretical Division, T-5, Los Alamos National Laboratory MS-B284, Los

Alamos, NM. 87545, USA, kucharik@lanl.gov,

kucharik@karkulka.fjfi.cvut.cz

dTheoretical Division, T-5, Los Alamos National Laboratory MS-B284, Los

Alamos, NM. 87545, USA, shashkov@lanl.gov

Abstract

Remapping is an essential part of most Arbitrary Lagrangian-Eulerian (ALE) meth-
ods. In this paper, we focus on the part of the remapping algorithm that performs
the interpolation of the fluid velocity field from the Lagrangian to the rezoned com-
putational mesh in the context of a staggered discretization. Standard remapping
algorithms generate a discrepancy between the remapped kinetic energy, and the
kinetic energy that is obtained from the remapped nodal velocities which conserves
momentum. In most ALE codes, this discrepancy is redistributed to the internal
energy of adjacent computational cells which allows for the conservation of total
energy. This approach can introduce oscillations in the internal energy field, which
may not be acceptable. We analyze the approach introduced in [1] which is not sup-
posed to introduce dissipation. On a simple example, we demonstrate a situation
in which this approach fails. A modification of this approach is described, which
eliminates (when it is possible) or reduces the energy discrepancy.

Key words:

Conservative Interpolations, Staggered Discretization, Flux-Based Remap,
Velocity Remap.

Preprint submitted to Journal of Computational and Applied Mathematics16 April 2009

Manuscript
Click here to view linked References

http://ees.elsevier.com/cam/viewRCResults.aspx?pdf=1&docID=9168&rev=0&fileID=70144&msid={BF07CC5C-C06E-489C-9FFA-DDD58569FC9E}

1 Introduction

Arbitrary Lagrangian-Eulerian (ALE) methods introduced in [6] appear to
be a reasonable compromise between Lagrangian and Eulerian approaches,
allowing to solve a large variety of fluid problems. The standard ALE algorithm
uses a Lagrangian solver to update fluid quantities and the computational
mesh in the next time step, which can eventually tangle the mesh. To avoid
such problems, mesh regularization (untangling or smoothing) is applied in the
case of low mesh quality, followed by a remapping step that interpolates all
fluid quantities from the Lagrangian to the smoothed mesh. Many authors have
described ALE strategies to optimize accuracy, robustness, or computational
efficiency, see for example [2,9,7,12].

It is possible to formulate the ALE scheme as a single algorithm [5] based on
solving the equations in a moving coordinate frame. For fluid flows, it is com-
mon to separate the ALE scheme into three separate stages, 1) a Lagrangian
stage in which the solution and computational mesh are updated; 2) a re-
zoning stage in which the nodes of the computational mesh are moved to a
more optimal position; and 3) a remapping stage in which the Lagrangian
solution is interpolated onto the rezoned mesh. Here, we focus on the last part
of the ALE algorithm – remapping – in the case of a staggered discretization,
where scalar quantities (density, pressure, specific internal energy) are defined
inside mesh cells, and vector quantities (positions, velocities) are defined at
mesh nodes [3]. A staggered discretization is used in most current ALE codes.
Any proper remapping method must conserve mass, momentum, and total
energy. Remapping of cell quantities in a flux form is described for example
in [10,11,8], here, we focus on the remap of the nodal momenta/velocities.
Generally, remapped nodal kinetic energy is not equal to nodal kinetic energy
obtained from remapped velocities (usually obtained from momentum conser-
vation equation in a flux form). This discrepancy leads to energy conservation
violation and consequently to wrong shock speeds. Conservation of total en-
ergy is usually restored by redistributing the kinetic energy discrepancy to
the internal energy of adjacent cells [2], which can violate smoothness of the
internal energy field.

In an alternative approach introduced in [1], the remapped nodal kinetic en-
ergy is expressed in a flux form derived from the conservation of momentum
and implies some constraints on momentum fluxes. Its conservation is thus en-
forced, and dissipation in the remapping process is eliminated. This approach
requires the solution of a global system of coupled non-linear equations.

This paper has three main goals:

(1) illustrate that approach [1] does not always work;

2

(2) describe an alternative approach, which yields the same solution as [1]
when it exists and reduces dissipation if it does not;

(3) highlight that this alternative approach can be used to get high-order
fluxes in the context of FCT-like (flux corrected transport) remapping to
improve accuracy but stay in bounds for velocity.

Only the 1D case and 1D examples are discussed in this paper. However, this
approach is generalizable into multiple dimensions, and we implemented this
in our Research Multi-Material ALE (RMALE) code.

2 Flux Form of Nodal Mass Remapping

In this paper, we use integer enumeration for mesh nodes, and half-integers
for mesh cells, as shown in Figure 1. The nodal mass in node i is remapped

ii−1 i+1i+1/2i−1/2

Fig. 1. Enumeration of nodes (black) and cells (red) of the 1D computational mesh.
Coordinates of cell centers (red circles) computed by averaging of involved nodal
coordinates.

in a standard flux form

m̃i = mi + F m
i+1/2 − F m

i−1/2 . (1)

where F m
i+1/2

represents an oriented mass flux from node i to a neighboring
node i + 1. The tilde denotes the remapped quantity (mass) in the new node.

The inter-nodal mass fluxes can be computed in several ways. The most nat-
ural way is based on intersecting the Lagrangian and rezoned nodal control
volumes, and integrating the reconstructed cell density profile here to obtain
the mass flux. This is simple in 1D but difficult to generalize to 2D, where it
leads to intersections of similar, generally non-convex polygons. Another ap-
proach is based on the interpolation of inter-nodal mass fluxes from inter-cell
mass fluxes, as described in [13]. When inter-nodal mass fluxes are computed,
all nodal quantities can then be remapped in an analogous flux form, where the
fluxes of a particular quantity are constructed by multiplying the mass fluxes
by the value of the reconstructed quantity per unit mass. This is demonstrated
in the next section for nodal momentum. For the purpose of this paper, the
particular method for computation of inter-nodal mass flux F m is not impor-
tant. Though, in real calculations, it can be complicated to compute the mass
fluxes correctly (better than first order accurate).

3

3 Flux Form of Momentum Remapping

The remap of momentum can be performed in the flux form

µ̃i = m̃i ũi = mi ui + F µ
i+1/2

− F µ
i−1/2

, (2)

defining the remapped nodal velocity ũ. This formula guarantees global con-
servation of momentum.

In our approach, the momentum flux is obtained by multiplication of the mass
fluxes by the flux velocities,

F µ
i+1/2

= F m
i+1/2 u∗

i+1/2 . (3)

The flux velocities u∗

i+1/2
must be defined. The new nodal velocity is then

computed as ũi = µ̃i/m̃i.

It is straightforward that this approach satisfies the DeBar condition [4,2],
which is usually understood as a condition for self-consistency of a velocity
remapping method. Suppose that we have a constant velocity field un = ū and
an arbitrary density field. After an arbitrary mesh movement, the remapping
process must reproduce the constant velocity field. Any velocity reconstruction
method will yield u∗ = ū for all flux velocities, so ū can be factored from the
whole right hand side of (2). The rest of the right hand side corresponds
exactly to the new nodal mass (1), which cancels with the denominator in
the expression of the new velocity formula. Thus, with the momentum flux in
form (3), the remapping algorithm preserves the constant velocity field and is
DeBar-consistent under the condition that the velocity reconstruction method
preserves it also.

The only remaining question is how to define flux velocities u∗. Several meth-
ods exist for the low- or high-order definition of u∗. We focus here on a high-
order velocity reconstruction method potentially conserving global nodal ki-
netic energy.

4 Kinetic Energy “Conserving” Remapping

In this section, we describe the high-order velocity definition algorithm that
conserves global nodal kinetic energy, introduced in [1]. We will describe the
derivation of the system and show a simple 1D example, for which the solution
of this system does not exist. We will also suggest a modification of the system,
which has the same solution as the solution of the original system if it exists.

4

This modification reduces the kinetic energy discrepancy, even in the case
when the solution of the original system does not exist.

4.1 System Derivation

As the original paper [1] was published in a not easily accessible journal, we
repeat the derivation of the system here. We substitute the old nodal mass
in the momentum update formula (2) by the nodal mass update formula (1),
and we obtain

m̃i ũi =
(
m̃i − F m

i+1/2 + F m
i−1/2

)
ui + F m

i+1/2 u∗

i+1/2 − F m
i−1/2 u∗

i−1/2 , (4)

and after moving the first term to the left hand side, we can rewrite the
expression as

m̃i (ũi − ui) = F m
i+1/2

(
u∗

i+1/2 − ui

)
− F m

i−1/2

(
u∗

i−1/2 − ui

)
. (5)

Now, we multiply this equation with

ūi =
ũi + ui

2
(6)

and we obtain

m̃i

(
ũ2

i

2
−

u2
i

2

)
= F m

i+1/2

(
u∗

i+1/2 − ui

)
ūi − F m

i−1/2

(
u∗

i−1/2 − ui

)
ūi . (7)

To obtain the difference between new and old nodal kinetic energy on the left
hand side, we add (m̃i − mi) u2

i /2 to the equation, and get

K̃i − Ki =
1

2
m̃i ũ

2
i −

1

2
mi u

2
i

=
1

2
(m̃i − mi) u2

i + F m
i+1/2

(
u∗

i+1/2 − ui

)
ūi

− F m
i−1/2

(
u∗

i−1/2 − ui

)
ūi .

(8)

After substituting for m̃i from (1), we can rewrite the expression as

K̃i − Ki = F m
i+1/2

((
u∗

i+1/2 − ui

)
ūi +

u2
i

2

)

− F m
i−1/2

((
u∗

i−1/2 − ui

)
ūi +

u2
i

2

)
.

(9)

We require the nodal kinetic energy in the flux form

K̃i = Ki + F K
i+1/2 − F K

i−1/2 . (10)

5

To guarantee global conservation of the nodal kinetic energy, a particular flux
viewed from both involved nodes must have the same value, which for example
for flux F K

i+1/2
means

(
u∗

i+1/2 − ui

)
ūi +

u2
i

2
=
(
u∗

i+1/2 − ui+1

)
ūi+1 +

u2
i+1

2
, (11)

and, analogously for all other fluxes. After solving the equation for the flux
velocity u∗

i+1/2
, we obtain the final expression

u∗

i+1/2 =
ui+1 ūi+1 − ui ūi −

(
u2

i+1 − u2
i

)
/2

ūi+1 − ūi
. (12)

Finally, we have a system of three types of equations (12), (6), and (2).This
system can be solved for the set of unknowns {u∗, ū, ũ} and its solution defines
the flux velocities u∗.

A simple fixed point iteration process can be used as a solver. The initial guess
for u∗ can be computed as an average of adjacent nodal velocities, for example

u∗,κ=0

i+1/2
=

1

2
(ui + ui+1) , (13)

where κ represents the iteration index. The iterative process is then

ũκ
i =

1

m̃i

(
mi ui + F m

i+1/2 u∗,κ−1

i+1/2
− F m

i−1/2 u∗,κ−1

i−1/2

)
, (14)

ūκ
i =

ũκ
i + ui

2
, (15)

u∗,κ
i+1/2

=
ui+1 ūκ

i+1 − ui ū
κ
i −

(
u2

i+1 − u2
i

)
/2

ūi+1 − ūi

. (16)

In the first step of the iterative process, we use this initial guess for the update
of nodal velocities using the momentum formula (14). In the second step, all
ū are updated as in (15). Finally, in the third step, the u∗,κ are updated
according to (16) (and similarly for other flux velocities), and we can start
the first step of the next iteration. Due to the construction of the system, its
solution must have the same kinetic energy as the old (Lagrangian) kinetic
energy. This allows us to choose the stopping criteria in the form

∣∣∣∣
Kκ − K

K

∣∣∣∣ < ǫ , (17)

where the tolerance for the kinetic energy discrepancy ǫ is chosen on the order

6

of 10−14 − 10−10, and the nodal kinetic energies are computed as

K =
∑

∀n

1

2
mn u2

n , (18)

Kκ =
∑

∀n

1

2
m̃n (ũκ

n)
2 . (19)

An alternative approach to solving this system is based on the construction of
a vector function by moving the left hand side of (11) to the right hand side,

~Fi+1/2 (u∗, ū) =
(
u∗

i+1/2 − ui+1

)
ūi+1 +

u2
i+1

2
−
(
u∗

i+1/2 − ui

)
ūi +

u2
i

2
. (20)

After substituting for ū from (6), and for ũ from (2), the function ~F only
depends on u∗. In (20), only one component of the vector function is shown,
but similar expressions are constructed for all other fluxes. Even though this
function has a local stencil, it is relatively large, especially in multiple dimen-
sions. System (20) is basically system of coupled quadratic equations of the
general form

~F (~u∗) = ~0 (21)

which can be solved using a Newton solver. We omit the explicit computation
of the Jacobian of F as required by the classic Newton’s method, and instead
employ the Jacobian Free Newton Krylov (JFNK) method. In practice, we use
the JFNK implementation in the NITSOL package [14].

4.2 Counter-Example – Non-Existent Solution

In this section, we present a simple 1D example, for which the system (12),
(6), (2) does not have a solution. The initial data are shown in Figure 2.

m =0.250

m =0.3~
0

m =0.51

m =0.5~
1

m =0.252

m =0.2~
2

~
0 1 2

u =−2 u =2.4 u =2.50 1 2

1z =0 z =0.5 z =0.6 z =1

0 1/2 1 3/2 2

δ δm=0.05 m=0.05

Fig. 2. Initial data of 1D example. Mesh nodes shown by black line segments, cell
centers are shown by red circles. Movement of the central node is shown by green
arrow, nodal positions (old position z and new position z̃), velocities (u), and masses
(old mass m and new mass m̃) are written below the nodes, as well as inter-nodal
mass fluxes (δm).

We have only two cells, positions of the surrounding nodes are z0 = 0, z1 = 0.5,
and z2 = 1. There is a constant density field ρ = 1 in the whole domain,

7

implying the values of nodal masses m0 = 0.25, m1 = 0.5, and m2 = 0.25.
Values of nodal velocities are u0 = −2, u1 = 2.4, and u2 = 2.5. The rezoned
mesh is obtained from the original mesh by moving the central node by 0.1,
i.e. z̃1 = 0.6. This allows us to simply compute the inter-cell mass fluxes as
δm = δz ρ, which means in our example F m

0 = 0, F m
1 = 0.1, and F m

2 = 0.
Inter-nodal mass fluxes are obtained by averaging of inter-cell fluxes, as in [13].
In our example, the fluxes are then F m

1/2
= 0.05 and F m

3/2
= 0.05. They have

the same value and we will use a common symbol F m
1/2

= F m
3/2

= δm for them.
New nodal masses are obtained by the flux form remap

m̃0 = m0 + δm = 0.3 , (22)

m̃1 = m1 + δm − δm = m1 = 0.5 , (23)

m̃2 = m2 − δm = 0.2 . (24)

Similarly, velocity is remapped in the flux form (2),

ũ0 =
1

m̃0

(
m0 u0 + δm u∗

1/2

)
, (25)

ũ1 =
1

m̃1

(
m1 u1 + δm u∗

3/2 − δm u∗

1/2

)
, (26)

ũ2 =
1

m̃2

(
m2 u2 − δm u∗

3/2

)
, (27)

where u∗

1/2
and u∗

3/2
are unknown flux velocities which we want to find using

equations

u∗

1/2 =
u1 ū1 − u0 ū0 − (u2

1 − u2
0)/2

ū1 − ū0

, (28)

u∗

3/2 =
u2 ū2 − u1 ū1 − (u2

2 − u2
1)/2

ū2 − ū1

. (29)

After multiplication by the denominators, substituting for all

ūi = (ui + ũi)/2 for all i = 0..2 , (30)

and substituting for all new velocities from (25), (26), (27), we get the following
system

u∗

1/2

(
u1 +

1

m̃1

(
m1 u1 + δm u∗

3/2 − δm u∗

1/2

)
− u0 −

1

m̃0

(
m0 u0 + δm u∗

1/2

))
=

u1

m̃1

(
m1 u1 + δm u∗

3/2 − δm u∗

1/2

)
−

u0

m̃0

(
m0 u0 + δm u∗

1/2

)
,

u∗

3/2

(
u2 +

1

m̃2

(
m2 u2 − δm u∗

3/2

)
− u1 −

1

m̃1

(
m1 u1 + δm u∗

3/2 − δm u∗

1/2

))
=

u2

m̃2

(
m2 u2 − δm u∗

3/2

)
−

u1

m̃1

(
m1 u1 + δm u∗

3/2 − δm u∗

1/2

)
.

8

We construct a vector of solutions ~x = [x1, x2] = [u∗

1/2
, u∗

3/2
]. By subtracting

the right hand side of the system, we can then rewrite the previous system in
the form

~F(~x) = ~0 , (31)

where

F1(x1, x2) = C1
1 x2

1 + C2
1 x1 x2 + C3

1 x1 + C4
1 x2 + C5

1 , (32)

F2(x1, x2) = C1
2 x2

2 + C2
2 x1 x2 + C3

2 x1 + C4
2 x2 + C5

2 , (33)

and where the constants are

C1
1 = −

δm

m̃1

−
δm

m̃0

, (34)

C2
1 =

δm

m̃1

, (35)

C3
1 = u1

(
1 +

m1

m̃1

+
δm

m̃1

)
− u0

(
1 +

m0

m̃0

−
δm

m̃0

)
, (36)

C4
1 = −

δm

m̃1

u1 , (37)

C5
1 = −

m1

m̃1

u2
1 +

m0

m̃0

u2
0 , (38)

and

C1
2 = −

δm

m̃2

−
δm

m̃1

, (39)

C2
2 =

δm

m̃1

, (40)

C3
2 = −

δm

m̃1

u1 , (41)

C4
2 = u2

(
1 +

m2

m̃2

+
δm

m̃2

)
− u1

(
1 +

m1

m̃1

−
δm

m̃1

)
, (42)

C5
2 = −

m2

m̃2

u2
2 +

m1

m̃1

u2
1 . (43)

First, we attempted to solve the original system (28), (29) using the fixed point
iteration but the iterative process did not converge. Next, we used NITSOL’s
JFNK [14] to solve the equivalent system (31) but it fails also, after 1000
iterations the solution jumps back and forth. We will show that the solution
indeed does not exist by locating the minimum of ‖ ~F(~x)‖2 and showing that
~F 6= ~0 there (let us note that the solution of the original system can exist when
the remapping process is performed in several steps, known as subcycling).

We note that, for other examples, the solution may exist. For example, after
changing the sign of the left velocity u0 = +2, both mentioned approaches

9

(fixed point iterative process and JFNK solver) converge in several iterations
to the correct solution with a zero kinetic energy discrepancy.

4.3 Modification of the System

We construct a scalar function G,

G(~u∗) = ‖ ~F(~u∗)‖2 . (44)

Note, that both functions have the same solution G(~u∗) = 0 ⇔ ~F(~u∗) = ~0.

While the components of the original function ~F can change their sign, G is
always positive. This means that G is equal to zero in its minimum, coinciding
with the solution of ~F . Therefore, we are going to locate a minimum of G. Both
solving ~F = ~0 and G = 0 requires the inversion of the respective Jacobians,
JF and JG. Jacobian of G is better conditioned than JG, but JG is symmetric
whereas JF is not. Now we construct third function

~H(~u∗) = ∇G(~u∗) , (45)

which is equal to ~0 in the minimum of G. The system

~H(~u∗) = ~0 (46)

can again be solved by JFNK.

Particularly, for our 1D example, the scalar function G has the form

G(x1, x2) = F2
1 + F2

2 , (47)

and, consequently the vector function ~H is

~H(x1, x2) =

[
∂G(x1, x2)

∂x1

,
∂G(x1, x2)

∂x2

]
. (48)

The solution of the system (46) is

~x solH = [0.354034363763449, 2.46508769340600] , (49)

where ‖ ~H(~x solH)‖ ∼ 10−15. So, we have found a minimum of G up to machine
accuracy, and thus the point closest to the solution of system (31). In this

point, the norm of F is still relatively large, ‖ ~F(~x solH)‖ ∼ 5.51 · 10−3. The
energy discrepancy here is δK = K − K̃ = −2.75 · 10−4 and it is not possible
to decrease it any more. For the initial guess ~x IG = [0.2, 2.45], the discrepancy
is δK = −3.28 · 10−2. For comparison, we have tried to remap velocity using
the donor approach (flux velocity is chosen from the nodal velocities according

10

to the mass flux sign, i.e. ~xdonor = [2.4, 2.5] in our example). In this case, the
energy discrepancy is δK = 0.404.

To clarify the situation, we demonstrate the situation in Figure 3. We have
sampled ‖ ~F(~x)‖ for x1 ∈ 〈0.1, 0.7〉 and x2 ∈ 〈1.4, 4.5〉. The magenta curve is

0.1 0.2 0.3 0.4 0.5 0.6 0.7

1.5

2

2.5

3

3.5

4

4.5

← δK=0

 IG u*
H

 FPI odd

 FPI even

 F odd

 F even

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.35 0.352 0.354 0.356 0.358 0.36

2.3

2.35

2.4

2.45

2.5

2.55

2.6

 u*
H

 F even

← δK=0

0

0.005

0.01

0.015

0.02

0.025

0.03

(a) (b)

Fig. 3. Colormap and several isolines of G(x1, x2) = ‖ ~F(x1, x2)‖
2 sample over

x1 ∈ 〈0.1, 0.7〉 and x2 ∈ 〈1.4, 4.5〉 (a), and zoom to the center of the sampling
region. Horizontal axis represents x1 = u∗

1/2
, vertical one represents x2 = u∗

3/2
. Ma-

genta line represent isoline of zero kinetic energy discrepancy δK = 0, the solution
is expected to be located on this line. Points show initial guess (IG, average of ad-
jacent nodal velocities), last odd and even iteration of fixed point iterative process
(FPI odd and FPI even), last odd and even iteration of NITSOL’s JFNK solver for
~F = ~0 (F odd and F even), and solution of ~H = ~0 (u∗

H
).

the isoline of K̃−K = 0, so we expect the solution to be located on this curve.
The initial guess (average of adjacent nodal velocities), and last odd and even

iterations of the fixed point iterative process and the JFNK solver for ~F = ~0
are shown to demonstrate divergence of the iterative process. Shown is also the
point representing the JFNK solution of the modified ~H = ~0 system (~x solH),
located close, but not exactly on the zero discrepancy curve. Thus, we have
reduced the value of the kinetic energy discrepancy, but have not eliminated
it completely.

To conclude our 1D example, we have demonstrated, that the system (28),
(29) has no solution in this case. Therefore, instead of looking for a solution of
~F (~x) = 0 we find the minimum of ‖~F (~x)‖2, which, if the solution of ~F (~x) = 0
existed, would coincide with it. The minimum is found correctly, up to machine
accuracy, the kinetic energy discrepancy is dramatically decreased (by the
factor of 102 when compared to the initial guess), but does not equal to zero.

We note that in 2D, the situation is similar. We can construct the G and ~H
functionals the analogous to 1D, but there will be a significantly larger number

11

of functional components and unknown flux velocities. The evaluation of the
~H is more complex in the 2D case. The method has the same properties as in
1D – if the solution of the original system (31) exists, we find it by solving the
modified system (46). If it does not exist, the solution of (46) decreases the
kinetic energy discrepancy, but does not eliminate it completely.

5 Conclusion

In this paper, we have discussed a potentially kinetic-energy-conservative al-
gorithm [1] for remapping nodal velocities in a staggered discretization. We
have demonstrated that this approach is not bullet-proof – in some cases, the
appropriate system might not have a solution. We have suggested a modifica-
tion of this approach that is based on the minimization of ‖~F (~x)‖ instead of

solving the original system ~F (~x) = ~0. This modification has the same solution
as the original system, if it exists. If the solution of the original system does not
exist, our modification decreases the kinetic energy discrepancy (dissipation)
but does not generally eliminate it completely. This approach (as well as most
other high-order methods) can introduce oscillations in the remapped nodal
velocity field. Therefore, a combination of this approach with the low-order
donor method by flux-corrected remap (FCR) is suggested.

Let us note that this (or a similar) approach is very promising as it elimi-
nates problems with energy conservation in the remapping stage of the ALE
algorithm without introducing disturbances into the internal energy field. The
described process can be incorporated to a multi-dimensional, multi-material
staggered remapper. Currently, it is implemented in the framework of our
RMALE research code, and it will be described in a future paper.

Acknowledgments

This work was performed under the auspices of the National Nuclear Security Ad-

ministration of the US Department of Energy at Los Alamos National Laboratory

under Contract DE-AC52-06NA25396. The authors acknowledge the partial sup-

port of the DOE Advance Simulation and Computing (ASC) Program and the

DOE Office of Science ASCR Program, and the Laboratory Directed Research and

Development program (LDRD) at the Los Alamos National Laboratory.

12

References

[1] D. S. Bailey. Second-order monotonic advection in LASNEX. In Laser Program

Annual Report ’84, number UCRL-50021-84, pages 3–57–3–61, 1984.

[2] D. J. Benson. Computational methods in Lagrangian and Eulerian hydrocodes.
Computer Methods in Applied Mechanics and Engineering, 99(2-3):235–394,
1992.

[3] E. J. Caramana, D. E. Burton, M. J. Shashkov, and P. P. Whalen. The
construction of compatible hydrodynamics algorithms utilizing conservation of
total energy. Journal of Computational Physics, 146(1):227–262, 1998.

[4] R. B. DeBar. Fundamentals of the KRAKEN code. Technical Report UCIR-
760, Lawrence Livermore Laboratory, 1974.

[5] J. Donea, S. Guiliani, and J.P. Halleux. An arbitrary Lagrangian-Eulerian finite
element method for transient fluid-structure interactions. Computer Methods

in Applied Mechanics and Engineering, 33(1-3):689–723, 1982.

[6] C. W. Hirt, A. A. Amsden, and J. L. Cook. An arbitrary Lagrangian-Eulerian
computing method for all flow speeds. Journal of Computational Physics,
14(3):227–253, 1974.

[7] P. Kjellgren and J. Hyvarinen. An arbitrary Lagrangian-Eulerian finite element
method. Computational Mechanics, 21(1):81–90, 1998.

[8] M. Kucharik, M. Shashkov, and B. Wendroff. An efficient linearity-and-bound-
preserving remapping method. Journal of Computational Physics, 188(2):462–
471, 2003.

[9] L. G. Margolin. Introduction to ”An arbitrary Lagrangian-Eulerian computing
method for all flow speeds”. Journal of Computational Physics, 135(2):198–202,
1997.

[10] L. G. Margolin and M. Shashkov. Second-order sign-preserving conservative
interpolation (remapping) on general grids. Journal of Computational Physics,
184(1):266–298, 2003.

[11] L.G. Margolin and M. Shashkov. Remapping, recovery and repair on staggered
grid. Computer Methods in Applied Mechanics and Engineering, 193(39-
41):4139–4155, 2004.

[12] J. S. Peery and D. E. Carroll. Multi-material ALE methods in unstructured
grids. Computer Methods in Applied Mechanics and Engineering, 187(3-4):591–
619, 2000.

[13] R. B. Pember and R. W. Anderson. A comparison of staggered-mesh Lagrange
plus remap and cell-centered direct Eulerian Godunov schemes for Eulerian
shock hydrodynamics. Technical report, LLNL, 2000. UCRL-JC-139820.

[14] M. Pernice and H. F. Walker. NITSOL: A Newton iterative solver for nonlinear
systems. SIAM Journal on Scientific Computing, 19(1):302–318, 1998.

13

